Vector fields and Gauss-Bonnet

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gauss-Bonnet Theorem for Vector Bundles

We give a short proof of the Gauss-Bonnet theorem for a real oriented Riemannian vector bundle E of even rank over a closed compact orientable manifold M . This theorem reduces to the classical Gauss-Bonnet-Chern theorem in the special case when M is a Riemannian manifold and E is the tangent bundle of M endowed with the Levi-Civita connection. The proof is based on an explicit geometric constr...

متن کامل

The Gauss-bonnet Theorem

The Gauss Bonnet theorem links differential geometry with topology. The following expository piece presents a proof of this theorem, building up all of the necessary topological tools. Important applications of this theorem are discussed.

متن کامل

Gauss - Bonnet brane cosmology

We consider 5-dimensional spacetimes of constant 3-dimensional spatial curvature in the presence of a bulk cosmological constant. We find the general solution of such a configuration in the presence of a Gauss-Bonnet term. Two classes of non-trivial bulk solutions are found. The first class is valid only under a fine tuning relation between the Gauss-Bonnet coupling constant and the cosmologica...

متن کامل

Visualization of Gauss-Bonnet Theorem

The sum of external angles of a polygon is always constant, π 2 . There are several elementary proofs of this fact. In the similar way, there is an invariant in polyhedron that is π 4 . To see this, let us consider a regular tetrahedron as an example. Tetrahedron has four vertices. Three regular triangles gather at each vertex. Developing the tetrahedron around each vertex, there is an open ang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1970

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1970-12607-6